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STABILITY OF A RECTANGULAR PLATE UNDER BIAXIAL TENSION

UDC 539.3D. N. Sheidakov

The stability problem of a rectangular plate undergoing uniform biaxial in-plane tensile strain is solved
using the three-dimensional equations of nonlinear elasticity. The surfaces of the plate are stress-
free, and special boundary conditions that allow one to separate variables in the linearized equilibrium
equations are specified on the lateral surfaces. For three particular models of incompressible materials,
the critical curves are constructed and the instability region is determined in the plane of the loading
parameters (the multiplicities of elongations of the plate material in the unperturbed equilibrium
state). The numerical results show that for thin plates loaded by tensile stresses, the size and shape
of the instability region depend only slightly on the relation among the length, width, and thickness
of the plate. Based on the results obtained, a simple approximate stability criterion is proposed for
an elastic plate under tensile loads.

Key words: nonlinear elasticity, stability of deformable bodies.

1. Unperturbed Equilibrium State. We consider the uniform strain [1]

X1 = λ1x1, X2 = λ2x2, X3 = λ3x3,

λ1 = const, λ2 = const, λ3 = const, (1.1)

0 � x1 � a, 0 � x2 � b, |x3| � h/2

of an elastic rectangular plate loaded at the edges x1 = 0, a and x2 = 0, b by distributed normal forces of inten-
sities q1 and q2, respectively. In relations (1.1), x1, x2, and x3 are the Cartesian coordinates in the undeformed
state (Lagrangian coordinates), X1, X2, and X3 are the Eulerian Cartesian coordinates, λ1, λ2, and λ3 are the
multiplicities of the elongations along the coordinate axes, and a, b, and h are the side lengths and thickness of the
undeformed plate, respectively. The strain gradient C is given by

C = λ1i1i1 + λ2i2i2 + λ3i3i3. (1.2)

Here i1, i2, and i3 is the orthonormal vector basis of the Cartesian coordinates. The incompressibility condition
detC = 1 implies the expression for the elongation multiplicity λ3 in terms of the strain parameters λ1 and λ2:
λ3 = (λ1λ2)−1.

The expression for the Cauchy–Green strain measure G corresponding to (1.1) is given by

G = C · Ct =
3∑

k=1

Gkikik, Gk = λ2
k. (1.3)

The Piola stress tensor D is written as

D = P · C, (1.4)
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where P is the Kirchhoff stress tensor, which is given by the formula [1]

P = 2W (G),G − σG−1

for an incompressible isotropic material and is equal to

P =
3∑

k=1

Pkikik = (χ1 − σλ−2
1 )i1i1 + (χ2 − σλ−2

2 )i2i2 + (χ3 − σλ−2
3 )i3i3,

χk = 2
∂W (G1, G2, G3)

∂Gk
, k = 1, 2, 3

(1.5)

for biaxial tension of the plate (1.1). Here W (G1, G2, G3) is the specific potential energy of the elastic plate. For
the unperturbed state, the pressure σ is determined from the condition of the stress-free surfaces of the plate, and
with allowance for (1.5), it is given by

σ = λ2
3χ3. (1.6)

Using (1.2) and (1.5), from (1.4) we determine the intensities q1 and q2 of the normal forces per unit area in
the undeformed configuration:

q1 = i1 · D · i1|x1=0,a = λ1χ1 − λ2
3

λ1
χ3, q2 = i2 · D · i2|x2=0,b = λ2χ2 − λ2

3

λ1
χ3.

One can easily show that the following energy relations are valid for q1 and q2:

q1 =
∂W (λ1, λ2)

∂λ1
, q2 =

∂W (λ1, λ2)
∂λ2

. (1.7)

2. Linearized Equilibrium Equations. We consider a small perturbation of the equilibrium state con-
sidered above. The linearized equilibrium equations of an incompressible body [1, 2] which describe this perturbed
state are written in terms of the undeformed configuration as

∇̊ · Θ = 0, ∇̊ = i1
∂

∂x1
+ i2

∂

∂x2
+ i3

∂

∂x3
; (2.1)

(C−1 · ∇̊) · w = 0, w = w1i1 + w2i2 + w3i3; (2.2)

Θ = D∗ = P ∗ · C + P · C∗, C∗ = ∇̊w, D∗ =
( d

dη
D(R + ηw)

)

η=0
. (2.3)

Here Θ is the linearized Piola stress tensor, ∇̊ is the nabla operator for the undeformed plate configuration, R is
the radius vector in the unperturbed state, and w is the vector of the additional displacements.

At the surfaces of the plate x3 = ±h/2, the boundary conditions

i3 · Θ|x3=±h/2 = 0 (2.4)

imply the absence of loads in the perturbed state.
To find an expression for P ∗ in (2.3), we use the fact that for an isotropic body, the tensors P and G are

coaxial, i.e., their eigenvectors ek (k = 1, 2, 3) coincide. In the unperturbed state, the unit vectors ek and ik

coincide. From (1.3) and (1.5), it follows that

P ∗ =
3∑

k=1

(P ∗
k ekek + Pke∗

kek + Pkeke∗
k); (2.5)

G∗ =
3∑

k=1

(G∗
kekek + Gke∗

kek + Gkeke∗
k). (2.6)

Since the vectors ek and e∗
k (k = 1, 2, 3) are mutually orthogonal (ek · e∗

k = 0), from (2.5) and (2.6) we
obtain

ek · P ∗ · ek = P ∗
k ; (2.7)
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ek · G∗ · ek = G∗
k; (2.8)

ei · P ∗ · ej =
Pi − Pj

Gi − Gj
ei · G∗ · ej . (2.9)

Here i, j = 1, 2, 3 (i �= j).
The relations for P ∗

k are obtained from (1.5):

P ∗
k =

3∑

s=1

χksG
∗
s + qG−1

k + σG−2
k G∗

k, q = −σ∗, χks =
∂χk(G1, G2, G3)

∂Gs
, k, s = 1, 2, 3. (2.10)

Formulas (2.7) and (2.9) give representations of all components of the tensor P ∗ in the basis ek in terms of
the components of G∗. The quantities G∗

k in (2.10) are determined according to (2.8), and the tensor G∗ is given
by

G∗ = C · ∇̊wt + ∇̊w · Ct =
3∑

k,s=1

(
λk

∂wk

∂xs
+ λs

∂ws

∂xk

)
ikis. (2.11)

Using (1.2), (1.5), and (2.7)–(2.11), from (2.3) we find the components of the linearized Piola stress tensor Θ
in the basis ik:

Θ11 =
(
χ1 +

σ

λ2
1

)∂w1

∂x1
+ λ1χ

∗
1 +

q

λ1
, Θ13 =

λ2
1χ1 − σ

λ2
1 − λ2

3

(∂w3

∂x1
+

λ3

λ1

∂w1

∂x3

)
,

Θ12 =
(λ1λ2(χ1 − χ2)

λ2
1 − λ2

2

+
σ

λ1λ2

)∂w1

∂x2
+

λ2
1χ1 − λ2

2χ2

λ2
1 − λ2

2

∂w2

∂x1
,

Θ21 =
(λ1λ2(χ1 − χ2)

λ2
1 − λ2

2

+
σ

λ1λ2

)∂w2

∂x1
+

λ2
1χ1 − λ2

2χ2

λ2
1 − λ2

2

∂w1

∂x2
,

Θ22 =
(
χ2 +

σ

λ2
2

)∂w2

∂x2
+ λ2χ

∗
2 +

q

λ2
, Θ23 =

λ2
2χ2 − σ

λ2
2 − λ2

3

(∂w3

∂x2
+

λ3

λ2

∂w2

∂x3

)
,

Θ31 =
λ2

1χ1 − σ

λ2
1 − λ2

3

(∂w1

∂x3
+

λ3

λ1

∂w3

∂x1

)
, Θ32 =

λ2
2χ2 − σ

λ2
2 − λ2

3

(∂w2

∂x3
+

λ3

λ2

∂w3

∂x2

)
,

(2.12)

Θ33 =
2σ

λ2
3

∂w3

∂x3
+ λ3χ

∗
3 +

q

λ3
,

χ∗
k = 2

(
λ1χk1

∂w1

∂x1
+ λ2χk2

∂w2

∂x2
+ λ3χk3

∂w3

∂x3

)
, k = 1, 2, 3.

We seek the components of the additional displacement vectors w1, w2, and w3 and the linearized hydrostatic-
pressure function q in the form

w1 = W1(x3) cos γ1x1 sinγ2x2, w2 = W2(x3) sin γ1x1 cos γ2x2,

w3 = W3(x3) sin γ1x1 sin γ2x2, q = Q(x3) sin γ1x1 sin γ2x2 (2.13)

(γ1 = πn/a, γ2 = πm/b, m, n = 1, 2, 3),

which allows us to separate the variables x1 and x2 in the neutral-equilibrium equations (2.1) and (2.2) and boundary
conditions (2.4) and reduce the stability problem to a linear homogeneous boundary-value problem for a system of
ordinary differential equations. Functions (2.13) satisfy the following conditions at the plate edges (conditions of
the first kind):

w2|x1=0,a = 0, w3|x1=0,a = 0, Θ11|x1=0,a = 0,

w1|x2=0,b = 0, w3|x2=0,b = 0, Θ22|x2=0,b = 0.
(2.14)

549



Taking into account (2.12) and (2.13), we write the linearized equilibrium equations (2.1) and (2.2) as

λ2
1χ1 − σ

λ2
1 − λ2

3

W ′′
1 −

[(
χ1 +

σ

λ2
1

+ 2λ2
1χ11

)
γ2
1 +

λ2
1χ1 − λ2

2χ2

λ2
1 − λ2

2

γ2
2

]
W1

−
( σ

λ2
1λ

2
2

+
χ1 − χ2

λ2
1 − λ2

2

+ 2χ12

)
λ1λ2γ1γ2W2 +

(λ2
1χ1 − σ

λ2
1 − λ2

3

+ 2λ2
1χ13

)λ3γ1

λ1
W ′

3 +
γ1

λ1
Q = 0,

λ2
2χ2 − σ

λ2
2 − λ2

3

W ′′
2 −

[(
χ2 +

σ

λ2
2

+ 2λ2
2χ22

)
γ2
2 +

λ2
1χ1 − λ2

2χ2

λ2
1 − λ2

2

γ2
1

]
W2

(2.15)

−
( σ

λ2
1λ

2
2

+
χ1 − χ2

λ2
1 − λ2

2

+ 2χ12

)
λ1λ2γ1γ2W1 +

(λ2
2χ2 − σ

λ2
2 − λ2

3

+ 2λ2
2χ23

)λ3γ2

λ2
W ′

3 +
γ2

λ2
Q = 0,

−
(λ2

1χ1 − σ

λ2
1 − λ2

3

+ 2λ2
1χ13

)λ3γ1

λ1
W ′

1 −
(λ2

2χ2 − σ

λ2
2 − λ2

3

+ 2λ2
2χ23

)λ3γ2

λ2
W ′

2

+ 2
( σ

λ2
3

+ λ2
3χ33

)
W ′′

3 −
(λ2

1χ1 − σ

λ2
1 − λ2

3

γ2
1 +

λ2
2χ2 − σ

λ2
2 − λ2

3

γ2
2

)
W3 +

1
λ3

Q′ = 0,

1
λ3

W ′
3 −

γ1

λ1
W1 − γ2

λ2
W2 = 0.

Using (2.12) and (2.13), we write boundary conditions (2.4) at the surfaces x3 = ±h/2 in scalar form

λ2
1χ1 − σ

λ2
1 − λ2

3

(
W ′

1 +
λ3γ1

λ1
W3

)
= 0,

λ2
2χ2 − σ

λ2
2 − λ2

3

(
W ′

2 +
λ3γ2

λ2
W3

)
= 0,

2(σ/λ2
3 + λ2

3χ33)W ′
3 − 2λ3(λ1γ1χ13W1 + λ2γ2χ23W2) + q/λ3 = 0, x3 = ±h/2.

(2.16)

One can easily show that the boundary-value problem (2.15), (2.16) has two independent classes of solutions.
One class is formed by solutions for which the deflection W3 and the linearized hydrostatic pressure function Q are
odd functions and the perturbation-vector components W1 and W2 are even functions. For solutions of the other
class, in contrast, the components W1 and W2 are odd functions and W3 and Q are even functions. Because of
this property of the boundary-value problem, it suffices to study the stability question using only the upper half of
the plate (0 � x3 � h/2). The properties of the odd and even functions W1, W2, W3, and Q imply the following
boundary conditions for x3 = 0:

W ′
1|x3=0 = W ′

2|x3=0 = W3|x3=0 = 0 (2.17a)

if W3 is an odd function and

W1|x3=0 = W2|x3=0 = W ′
3|x3=0 = 0 (2.17b)

if W3 is an even function.
It should be noted that the use of the representations

w1 = W1(x3) sin γ1x1 cos γ2x2, w2 = W2(x3) cos γ1x1 sin γ2x2,

w3 = −W3(x3) cos γ1x1 cos γ2x2, q = −Q(x3) cos γ1x1 cos γ2x2;
(2.18)

w1 = W1(x3) cos γ1x1 cos γ2x2, w2 = −W2(x3) sin γ1x1 sin γ2x2,

w3 = W3(x3) sin γ1x1 cos γ2x2, q = Q(x3) sin γ1x1 cos γ2x2;
(2.19)

w1 = −W1(x3) sin γ1x1 sinγ2x2, w2 = W2(x3) cos γ1x1 cos γ2x2,

w3 = W3(x3) cos γ1x1 sin γ2x2, q = Q(x3) cos γ1x1 sin γ2x2

(2.20)
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also leads to the linear homogeneous boundary-value problem (2.15)–(2.17) for determining the functions W1, W2,
W3, and Q. At the plate edges, the solution of the form of (2.18) satisfies the conditions of the second kind (sliding
clamped boundary conditions)

w1|x1=0,a = 0, Θ12|x1=0,a = 0, Θ13|x1=0,a = 0,

w2|x2=0,b = 0, Θ21|x2=0,b = 0, Θ23|x2=0,b = 0;
(2.21)

the solutions (2.19) satisfy the boundary conditions of the third kind

w2|x1=0,a = 0, w3|x1=0,a = 0, Θ11|x1=0,a = 0,

w2|x2=0,b = 0, Θ21|x2=0,b = 0, Θ23|x2=0,b = 0;

the solutions (2.20) satisfy the boundary conditions the fourth kind

w1|x1=0,a = 0, Θ12|x1=0,a = 0, Θ13|x1=0,a = 0,

w1|x2=0,b = 0, w3|x2=0,b = 0, Θ22|x2=0,b = 0.

3. Numerical Results and Discussion. The linearized boundary-value problem (2.15)–(2.17) is solved
by the finite-difference method [3]. The effectiveness of the method was tested using the two-dimensional stability
problem of a rectangular bar in tension with respect to small planar perturbations. This problem follows from
problem (2.1)–(2.4) with allowance for representation (2.21) for γ2 = 0 and λ2 = 1. The numerical results were
compared with the analytical solution of this problem [4]. The error is smaller than 0.01%.

The critical curves in the parameter plane (λ1, λ2) obtained from the solution of the boundary-value problem
(2.15)–(2.17) possess some symmetry. In particular, the curve corresponding to the values γ1 = μ and γ2 = ν (μ � 0
and ν � 0 are some arbitrary values) and the curve corresponding to γ1 = ν and γ2 = μ are reflections in the line
λ1 = λ2, and the critical curves obtained for γ1 = γ2 (m = nb/a) are symmetric about this line.

Stability analysis of a rectangular plate under biaxial tension was performed for the Biderman material
model [5, 6], for which the specific strain energy is given by

W (G1, G2, G3) = d0(I2 − 3) + d1(I1 − 3) + d2(I1 − 3)2 + d3(I1 − 3)3,

d0 � 0, d1 � 0, d3 � 0, d1 + d3 � 0, 3d2 +
√

15d1d3 � 0

[I1 = trG and I2 = (1/2)(tr2 G − tr G2)], a power-law material with the potential of the form [7, 8]

W (G1, G2, G3) = d(I1 − 3)β , d > 0, β > 1/2,

and the Ogden material model with the potential of the form [9]

W (G1, G2, G3) = d(tr Gβ − 3), d > 0, β �= 0.

The numerical results given in the present paper were obtained for the following constants: d0 = 0, d1 = 27,
d2 = −60, and d3 = 80 for the Biderman material, d = 1 and β = 0.51 for the power-law material, and d = 1 and
β = 0.1 for the Ogden material. For these constants, all three materials satisfy the Hadamard condition [1, 6]. It
should be borne in mind that if the energy function W (G1, G2, G3) is multiplied by an arbitrary positive constant,
the critical ratio of the strain parameters λ1 and λ2 remains unchanged; it is therefore assumed for this problem
that the specific energy is determined to within an arbitrary positive multiplier.

The parameter ξ is equal to the ratio of the plate thickness h to the length of the shorter side min {a, b}
in the undeformed state of the body. In the present paper, the analysis is confined to plates with a normalized
thickness ξ � 1/2.

Stability analysis was performed for tensile axial loads (q1 � 0 and q2 � 0). Using (1.7), we obtain the
equations q1(λ1, λ2) = 0 and q2(λ1, λ2) = 0, which describe two curves in the parameter plane (λ1, λ2) that cut off
the region of compressive loads. (In Figs. 1–3, the region of compressive loads is dashed.)

Figures 1 and 2 show the critical curves (the Biderman material model) in the plane of the parameters
δ1 = λ1 − 1 and δ2 = λ2 − 1 for a square plate subject to the boundary conditions of the first kind (2.14) for the
case where the deflection W3 is an odd function. For each curve, the value of the parameter n (γ1 = πn/a) to which
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Fig. 1. Critical curves for the Biderman material (ξ = 0.1) for m = 1 (a) and 3 (b): curves 1 and 2
refer to q1 = 0 and q2 = 0, respectively.
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Fig. 2. Critical curves for the Biderman material (ξ = 0.2) for m = 1 (a) and 2 (b): curves 1 and
2 refer to q1 = 0 and q2 = 0, respectively.
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Fig. 3. Critical curves for the Biderman material for flexural buckling for m = 1 (a) and 3 (b):
curves 1 and 2 refer to q1 = 0 and q2 = 0, respectively.
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Fig. 4. Stability region for the Biderman material (ξ = 0.1): I is the region of compressive loads,
II is the instability region, and III is the region in which the convexity condition (4.1) is violated;
curves 1 and 2 refer to q1 = 0 and q2 = 0, respectively.

the curve corresponds is indicated. One can see from Figs. 1 and 2 that as the plate thickness decreases, the curves
are spaced more closely to each other. This effect is observed for all the materials considered.

For the case of flexural buckling (the deflection W3 is an even function), the critical curves are shown in
Fig. 3 for ξ = 0.1 and a = b. According to the results obtained for thin plates (ξ � 0.1), lower-order flexural modes
do not occur. Moreover, the existence region of flexural buckling modes is embedded in the existence region of
solutions of the boundary-value problem (2.15)–(2.17) for which W3 is an odd functions. Consequently, to construct
the stability region for biaxial tension of the plate, it suffices to study only the buckling modes for which W3 is
an odd function; in this case, one need not find unstable flexural modes. Results obtained for the other materials
support this conclusion.

Figure 4 shows the stability region for a square plate (the Biderman material model) with boundary condi-
tions of the first kind. As can be seen from Fig. 4, the stability region is symmetric about the line λ1 = λ2, which
follows from the above-mentioned symmetry property of the solution of the boundary-value problem (2.15)–(2.17).
Calculations show that for thin plates (ξ � 0.1), the size and shape of the stability region depend only slightly on
the plate thickness and the aspect ratio.

Figure 5 shows the stability regions for ξ = 0.1 and a = b for the Ogden material and power-law material
models.

If boundary conditions of the second kind (a sliding clamped edge) are specified at the plate edges, the
linearized boundary-value problem is solved, as indicated above, using representations (2.18) [if the conditions of
the third or fourth kinds are specified, representations (2.19) or (2.20), respectively, are used]. In this case, the
spectrum of the critical curves for m, n = 1, 2, 3, . . . is the same as for a plate subject to boundary conditions of the
first kind. At the same time, solutions of the form of (2.18)–(2.20) admit, in contrast to (2.13), the occurrence of
planar instability modes (when one component of the perturbation vector w vanishes). To obtain the critical curves
corresponding to these buckling modes, one should solve the boundary-value problem (2.15)–(2.17) for m = 0,
n = 1, 2, . . . and m = 1, 2, . . . , n = 0. It was found from the calculations results that the stability region for a thin
plate subject to the boundary conditions of the first kind differs only slightly from that for the plate subject to the
sliding clamped boundary conditions or conditions of the third and fourth kinds. The properties of the stability
region of thin plates (ξ � 0.1) mentioned above were found for all the material models considered in the present
paper.

4. Stability Criterion. We consider the total potential strain energy of the plate Π as a function the
parameters λ1 and λ2:

Π(λ1, λ2) =
∫ ∫ ∫

v

W (G1, G2, G3) dv.
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Fig. 5. Stability regions for the Ogden material (a) and power-law material (b) (notation the same
as in Fig. 4).

For the function Π(λ1, λ2), the rigorous convexity condition is given by

∂2Π
∂λ2

1

> 0,
∂2Π
∂λ2

1

∂2Π
∂λ2

2

−
( ∂2Π

∂λ1 ∂λ2

)2

> 0. (4.1)

In view of relations (1.7) and the fact that the initial (subcritical) stress-strain state is uniform, this condition can
be written in the form of the Drucker postulate [10]

dq1 dλ1 + dq2 dλ2 > 0.

The last condition implies the inequalities
∂q1

∂λ1
> 0,

∂q1

∂λ1

∂q2

∂λ2
− ∂q1

∂λ2

∂q2

∂λ1
> 0.

In the case of the two-dimensional stability problem (λ2 = 1) of an elastic rectilinear bar in tension, there
exists a theorem (which is proved in [4] for an arbitrary incompressible material) that states that no bifurcation of
the equilibrium of the bar in tension occurs at the ascending part of the stress–strain diagram q1(λ1). In the plane
problem, because q1(λ1) = (abh)−1∂Π(λ1)/∂λ1, it follows that the inequality ∂q1/∂λ1 = (abh)−1∂2Π/∂λ2

1 > 0, i.e.,
the convexity condition for the energy function Π(λ1), is a sufficient stability condition for the equilibrium of the
bar in tension, which is supported by numerical results obtained in the present study. Previously, for the stability
problem of a cylinder subjected to combined tension and torsion, it has been shown that the accuracy of the convex
potential energy criterion provides reasonable accuracy for practical use [11].

In the case of a rectangular plate under biaxial tension, it is of interest to compare the strain stability region
and the convexity region of the energy Π(λ1, λ2). For the plate subject to boundary conditions of the first kind,
these regions are shown in Figs. 4 and 5 for the Biderman, Ogden, and power-law materials. One can see that in
the range where the convexity condition of the energy Π holds, instability does not occur (regardless of the plate
dimensions). The regions in which the convexity and instability conditions are violated for thin plates (ξ � 0.1)
differ from those shown in Figs. 4 and 5 only slightly, but as the thickness increases, the difference in the size and
shape of these regions becomes more pronounced since the instability region is diminished with increasing thickness
whereas the size and shape of the convexity region do not depend on the plate dimensions.

Comparison results of the stability and convexity regions of the energy for other types of boundary conditions
[conditions of the second kind (2.18), third kind (2.19), or fourth kind (2.20)] agree qualitatively with the results
obtained for the plate subject to the conditions of the first kind.

It should be noted that a comparison of the stability and convexity regions of the energy is meaningful
only for tensile boundary loads (q1 � 0 and q2 � 0). Indeed, as calculations show, if only one of the loads q1

and q2 is compressive, a loss of stability is possible in the convexity region of the energy Π(λ1, λ2). For example,
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a square plate (ξ = 0.1; the Biderman material model) with boundary conditions of the first kind subjected to
biaxial tension by loads of equal intensity (q1 = q2 < 0) loses stability for a strain λ1 = λ2 = 0.9891, whereas the
convexity condition (4.1) always holds for λ1 = λ2 < 1.

Thus, the convexity property of the total potential energy Π(λ1, λ2) is a sufficient stability condition for
tensile boundary loads and can be used as a stability criterion in solving practical problems of rectangular plates
under biaxial tension. A drawback of this criterion is that the convexity region of the total potential energy and
the stability region obtained by solving the linearized boundary-value problem (2.15)–(2.17) can differ substantially
for some material models.

This work was supported by the Russian Foundation for Fundamental Research (Grant Nos. 05-01-00638,
06-01-00726, and 06-08-96635r yug).
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